$$
\begin{aligned}
& \quad \begin{array}{l}
\text { ges: } d=10 \mathrm{~mm} \\
F_{m_{1}}=35800 \mathrm{~N} \\
\quad F_{m_{2}}=55600 \mathrm{~N}
\end{array} \\
& R_{m_{1}}=\frac{F_{m_{1}}}{S}=\frac{35800}{78,5}=456 \frac{\mathrm{~N}}{\mathrm{~mm}^{2}} \\
& R_{m_{2}}=\frac{F_{m 2}}{S}=\frac{55800}{78,5}=708 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

4. Aus einem Zugversuch sind folgende Werte bekannt.
a. Berechnen Sie die Bruchgrenze Rm.
b. Berechnen Sie die Bruchdehnung A.

	Probe 1	Probe 2
Werkstoff	$S 235 \mathrm{~J}$	$S 355 \mathrm{JR}$ $+C$
Durchmesser d in mm	10 mm	10 mm
Longmanglänge	200 mm	200 mm

Gemessene Werte: Nach dem Versuch eintragen

Höchstkraft $\mathrm{F}_{\text {max }}$ in N	$35,8 \mathrm{kN}$	55,6k N
Meßläyge nach dem Bruc L_{u} n mm	$219,6 \mathrm{~mm}$	$207,4 \mathrm{~mm}$ 䏩該

$$
\begin{aligned}
& \Delta l=l_{u}-L_{0}=219,6-200=19,6 \mathrm{~mm} \\
& D \text { chnury } A=\frac{\Delta l}{l_{0}} \cdot 100 \%=\frac{19,6}{200} \cdot 100 \%=9,890
\end{aligned}
$$

Speiche verzinkt	$d=2 \mathrm{~mm}$
Strebe am Stahlgepäckträger	$d=$
Obere Befestigung am Aluminium Gepäckträger	$\begin{aligned} & 1=26,6 \mathrm{~mm} \\ & b=3,1 \mathrm{~mm} \end{aligned}$
Sattelstütze	$\begin{aligned} & \mathrm{d}=1: 22 \mathrm{~m} \\ & \mathrm{D}=\mathrm{A}: 27 \mathrm{~mm} \end{aligned}$
Gabelschaft	$\begin{aligned} & \mathrm{d}=\text { innen } 25,35 \mathrm{~mm} \\ & \mathrm{D}=\mathrm{AuBen} 28,55 \mathrm{~mm} \end{aligned}$

- Berechnen Sie die Querschnittsfläche für die Bauteile

Speiche verzinkt	$s=\frac{3,74 \cdot 2^{2}}{4}=3,74 \mathrm{~mm}^{2}$
Strebe am Stahlgepäckträger	$\frac{\frac{5}{11 \times d^{2}}}{\frac{11 \times 6,2^{2}}{4}=30,9^{m} \mathrm{man}^{2}}$
Obere Befestigung am Aluminium Gepäckträger	$\begin{aligned} & s=\ell \cdot s \\ & s=26,6 \cdot 3,1=82,46 \mathrm{~mm}^{2} \end{aligned}$
Sattelstutre	$\begin{aligned} & S=A=\frac{\pi}{4} \cdot\left(D^{2}-d^{2}\right) \\ & S=\frac{\pi}{4} \cdot\left(27^{2}-22^{2}\right)=192,4 \mathrm{~mm}^{2} \end{aligned}$
Gabelschaft	$s=A=\frac{\pi}{4} \cdot\left(28,55^{2} \cdot 25,35^{2}\right)=135$

- Ermitteln Sie den Werkstoff und die Zugfestigkeit aus dem Tabellenbuch

Speiche verzinkt Werkstoff Stah L	$\mathrm{R}_{\mathrm{m}}=$
Strebe am Stahlgepäckträger Werkstoff stank	$\mathrm{R}_{\mathrm{m}}=$
Obere Befestigung am Aluminium Gepäckträger Werkstoff \qquad	$\mathrm{R}_{\mathrm{m}}=$
Sattelstütze werkstoff ACn_{n}	$\mathrm{R}_{\mathrm{m}}=$
Gabelschaft Werkstoff stan2 \qquad	$\mathrm{R}_{\mathrm{m}}=$

