1. Womit wird ein CAN BUS diagnostiziert und bewertet?
2. Mit wie viel Leitungen sind die Steuergeräte miteinander verbunden?

Zwei Leitungen
3. Wie viel Bit/s sind 100 kBaut?

$$
\begin{aligned}
& 100 \text { kBant }=100 \frac{\text { BBit }}{S}-100000 \frac{\text { Bit }}{5} \\
& 1 \text { Bit }=0 \text { oder } 1
\end{aligned}
$$

$1 \mathrm{Brt}=0$ oder 1 S
wie wird das oben genannte biagnosegerät angeschlossen?
Die Minus - Leitangen an Masse.
Eine Plus-Leitung an CAN High exa
Eine Plus-Leitung an CAN Lov
5. Was bedeutet diese Darstellung?

6. In welchem Pegel arbeitet CAN-low? svbis 1V
7. In welchem Pegel arbeitet CAN-high? OV bis $4 V$
8. Was bedeutet Rezessiv und Dominant?

Rezessiv ist dor Ruhemodus
Dominant ist der Signalmodus
9. Wie können wir CAN-low und CAN-high unterscheiden?

Bei CAN-low geht die Kutve runter
Bei CAN-high geht die Kurve hoch
10. Wie lässt sich zwischen einem 100 kBaut und einem 500 kBaut Bussystemumterscheiden?

Nar ein Abschlusswiderstand
Die Spannungswerte sind anders.
CAN-Low: 2,5V bis 1,5V
CAN-high: 2,5V bis 3,5V
8. Was bedeutet Rezessiv und Dominant?

Rezessiv ist dor Ruhemodus
Dominant ist der Signalmodus
9. Wie können wir CAN-low und CAN-high unterscheiden?

Bei CAN-low geht die Kutve runter
Bei CAN-high geht die Kurve hoch
10. Wie lässt sich zwischen einem 100 kBaut und einem 500 kBaut Bussystermunterscheiden?

Nar ein Abschlusswiderstand
Die Spannungswerke sind anders.
CAN-Low: 2,5V bis 1,5V
CAN-high: 2,5V bis 3,5V
8. Was bedeutet Rezessiv und Dominant?
9. Wie können wir CAN-low und CAN-high unterscheiden?
10. Wie lässt sich zwischen einem 100 kBaut und einem 500 kBaut Bussystermumlerscheiden?


Kurzschluss nach Masse













|  | Verdichdurgst. | Arbeitstakt |
| :--- | :--- | :--- |
| $0^{\circ}$ |  |  |
| 30 |  |  |
| 60 |  |  |
| 90 |  |  |
| 120 |  |  |
| 150 |  |  |
| 180 |  |  |
|  |  |  |

Kolsenkraft berechnen gy:

$$
\begin{aligned}
& p=38 \mathrm{bar}=380 \mathrm{~N} / \mathrm{cm}^{2} \\
& d
\end{aligned}=65 \mathrm{~mm}=6,5 \mathrm{~cm}, \begin{aligned}
A & =\frac{\pi \cdot d^{2}}{4}=\frac{\pi \cdot 6,5}{4}=33,1 \mathrm{~cm}^{2} \\
F=P \cdot A=380 \cdot 33,1 & =12609 \mathrm{~N} \\
& \approx 1260 \mathrm{hy} \\
& \simeq 1,3 \mathrm{t}
\end{aligned}
$$

